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appropriately dimensioned state-space realization of G(s,6)

matrices relating state model of P(s) to uncertain parameters in
A matrix

transfer function of uncertain System

feedback control system

uncertain scalar gain factor reflected at input and output, respectively
number of first-order transfer function blocks in G(s,6)

number of second-order transfer function blocks in G(s, §)

index variable

nominal closed-loop plant transfer function matrix

nominal open-loop plant transfer function matrix (or interconnection
structure)

minimal number of uncertain parameters in A matrix
fictitious uncertain parameter input vector to P(s), p € R™
fictitious uncertain parameter output vector from P(s), q € R™

order of highest cross term in A As BA, Ca, and D, respectively

order of highest cross term in A As Ba, Cp, and D collectively
Laplace frequency variable
control input vector, u € R"u

vector of exogenous inputs (e.g., noise, disturbances, commands),
w € R™w

state vector, x € R"«
output measurement vector, y € R™

vector of controlled variables (e.g., tracking error and control posi-
tion and rate), z € R™

vector of real uncertain parameters, § € R™ = R™I 4 R™Mp
ith element of &
diagonal uncertainty matrix with § along main diagonal, A € RM*xm

uncertainty matrix associated with matrix A, B, C, and D,
respectively

uncertain variable

index variable
nominal (unperturbed)

real (or first order)
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Summary

In the design and analysis of robust control systems for uncertain plants, representing the
system transfer matrix in the form of what has come to be termed an “M-A model” has become
widely accepted and applied in the robust control literature. The symbol M represents a transfer
function matrix M(s) of the nominal closed-loop system, and A represents an uncertainty
matrix acting on M(s). The nominal closed-loop system M(s) results from closing the feedback
control system K(s) around a nominal plant interconnection structure P(s). The uncertainty
can arise from various sources, such as structured uncertainty from parameter variations or
multiple unstructured uncertainties from unmodeled dynamics and other neglected phenomena.
In general, A is a block diagonal matrix, but for real parameter variations, A is a diagonal
matrix of real elements. Conceptually, the M-A structure can always be formed for any linear
interconnection of inputs, outputs, transfer functions, parameter variations, and perturbations.
However, very little of the currently available literatiire addresses computational methods for
obtaining this structure, and none of this literature (to the authors’ knowledge) addresses a
general methodology for obtaining a minimal M-A model for a wide class of uncertainty,
where the term “minimal” refers to the dimension of the A matrix. Since having a minimally
dimensioned A matrix would improve the efficiency of structured singular value (or multivariable
stability margin) computations, a method of obtaining a minimal M-A model would be useful.
Hence, a method of obtaining the interconnection system P(s) is required. This paper presents
(without proof) a generalized procedure for obtaining a minimal P-A structure for systems with
real parameter variations. With this model, the minimal M-A model can then be easily obtained
by closing the feedback loop. The procedure involves representing the system in a cascade-form
state-space realization, determining the minimal uncertainty matrix A, and constructing the
state-space representation of P(s). Three examples are presented to illustrate the procedure.

1. Introduction

Robust control theory for both analysis and design has been the subject of a vast amount
of research. (See refs. 1 through 35.) In particular, robust stability and performance have been
emphasized in much of this work, as, for example, in the development of H°° control theory.
(See refs. 10 through 15 and 19 through 23.) Moreover, the development of robust control system
design and analysis techniques for unstructured (refs. 1 through 9, 13, 19, and 21) as well as
structured (refs. 16 through 35) plant uncertainty continues to be the sub ject of much research-—
particularly the latter. Unstructured plant uncertainty arises from unmodeled dynamics (such
as actuator or engine dynamics) and other neglected phenomena (such as nonlinearities with
conic sector bounds). This uncertainty is called “unstructured” because it is represented as
a norm-bounded perturbation with no particular assumed structure. Plant uncertainty is
called “structured” when there is real parameter uncertainty in the plant model, or when
there are multiple unstructured uncertainties occurring at various points within the system
simultaneously. Plant parameter uncertainty can arise from modeling errors (which usually
result from assumptions and simplifications made during the modeling process and/or from the
unavailability of dynamic data on which the model is based) or from parameter variations that
occur during system operation.

Robust control design and analysis methods for systems with unstructured uncertainty
are accomplished via singular value techniques (refs. 1 through 9 and 21). For systems with
structured plant uncertainty, however, a technique which takes advantage of that structure, such
as the structured singular value (SSV) (refs. 16 through 27) or multivariable stability margin
(MSM) (refs. 28 through 33), should be used. In order to compute the SSV or MSM, it is required
that the system be represented in terms of an M-A model. The M represents a transfer function
matrix M(s) of the nominal closed-loop system, and A represents an uncertainty matrix acting



on M(s). The system M(s) is formed by closing the feedback system K (s) around the nominal
open-loop plant interconnection structure P(s), as shown in figure 1.
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Figure 1. Block diagram of general M-A model.

For multiple unstructured uncertainties, A is a block diagonal matrix, and for real parameter
uncertainties, the A matrix is diagonal. As indicated in the literature (refs. 17, 18, 20, and 21),
this model can always be formed for any linear interconnection of inputs, outputs, transfer
functions, parameter variations, and perturbations. However, very little of the literature
discusses methods for obtaining an M-A model. While formulation of an M-A model for
unstructured uncertainties does not pose a major problem, forming an M-A model for real
parameter variations can be very difficult. In reference 29, De Gaston and Safonov present an
M-A model for a third-order transfer function with uncertainty in the location of its two real
nonzero poles and in its gain factor. Although the given M-A model is easily obtained for
this simple example, other examples do not yield such a straightforward result. A general state
model of M(s) for additive real perturbations in the system A matrix (where A is assumed to
be closed loop) is discussed in reference 34. Unfortunately, this model is not general enough
for many examples, since system uncertainty is restricted to the A matrix and the uncertainty
class is restricted to be linear. Morton and McAfoos (ref. 26) present a general method for
obtaining an M-A model for linear (affine) real perturbations in the system matrices (A, B,
C, and D) of the open-loop plant state model. In this model, the interconnection matrix P(s)
is constructed first for separating the uncertainties from the nominal plant, and then M(s) is
formed by closing the feedback loop. The M-A model thus formed can be used in performing
robustness analysis of a previously determined control system. Alternatively, if the feedback
loop is not closed, p-synthesis techniques (refs. 19, 20, and 21) can be applied to the P-A model
for robust control system design of K(s). The result of Morton and McAfoos essentially reduces
to that of reference 34 when the perturbations occur only in the A matrix (and the A matrix of
ref. 34 is assumed to be open loop). An algorithm for easily computing M(s) based on the result
of Morton and McAfoos is presented in reference 35. Although this method of constructing an
M-A model is adequate for linear uncertainties, many realistic problems require a more general
class of uncertainties, since, for real problems, uncertainties can arise in a nonlinear functional
form (such as nth-order terms and cross terms). For these cases, it often becomes necessary to
have repeated uncertain parameters in the A matrix, as is discussed later. Since the M-A model
is a nonunique representation, models of various dimensions (due to the repeated parameters)
can be constructed depending on how the model is obtained. It is therefore desirable to obtain
one of minimal dimension so that the complexity of the SSV or MSM computations during
robust control system design or analysis can be minimized. However, none of the literature (to
the authors’ knowledge) addresses the issue of minimality.
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This paper presents a methodology for constructing a minimal P-A model for single-input,
single-output (SISO) systems with real parametric multilinear uncertainties, where the terms
“minimal” and “multilinear” are defined as follows:

Definition: A P-A model is minimal if the A matrix is of minimal dimension. It is
shown later that A is minimal when its dimension is as close to the num-
ber of independent uncertain parameters as possible, that is, when it con-
tains a minimal number of repeated uncertain parameters (if any).

Definition: A function is multilinear if the functional form is linear (affine) when
any variable is allowed to vary while the others remain fixed; for exam-
ple, f(a,b,c) = a + ab+ bc + abe is a multilinear function.

The requirement that the P-A model be minimal provides a means of improving the efficiency
of the SSV and/or MSM computations during robust control system design or analysis. The
allowance of multilinear functions of the uncertain parameters provides a means of handling
certain nonlinear terms in the transfer function coefficients (and, hence, the system matrix
elements), namely, cross-product terms. In addition, nonlinear nth-order terms can be
approximated within the multilinear framework, although this representation is conservative.
The proposed procedure determines the minimal A matrix and the state-space form of P(s)
given the system transfer function in terms of the uncertain parameters, where any or all
the numerator and/or denominator coefficients can be multilinear functions of the uncertain
parameters except the leading denominator coefficient. It should be noted, however, that this
procedure is presented without formal proof. Moreover, the state-space form used in modeling
P(s) is an extension of the result of Morton and McAfoos for real parametric linear (affine)
uncertainties (ref. 26). An extension of this result to multiple-input, multiple-output (MIMO)
systems appears possible and is under study. The paper is divided into the following sections: a
formal statement of the problem to be solved is presented in section 2, followed by a discussion
of minimality considerations in section 3; the solution structure is presented in section 4,
and computational details of the solution are presented in section 5; finally, several examples
illustrating the solution are given next in section 6, followed by some concluding remarks in
section 7.

2. Problem Statement

Given the transfer function of an uncertain system G(s, 6) as a function of the real uncertain
parameters 4, find a minimal P-A model of the form depicted in figure 2 such that

1. The diagonal uncertainty matrix A is of minimal dimension

2. The model of the nominal open-loop plant P(s) is in state-space form
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et |
I I
I P A@S) <—q— ]
! ]
| I
! !
I I
I L 3

u_ ; P(s) ' Y o
! |
I

Figure 2. Block diagram of general P-A model.
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The model must handle multilinear uncertainty functions in any or all the transfer function
coefficients except the leading denominator coefficient. In order to construct a minimal P-A
model, the dimension of the A matrix must be minimized. Hence, factors which have been
found to affect the dimension of the P-A model are discussed next, followed by the approach
used in forming a solution to this problem.

3. Minimality Considerations

In constructing a P-A model of an uncertain system, the A matrix can become unnecessarily
large due to repeated uncertain parameters on its main diagonal. It is therefore of interest to
examine the factors which can cause this repetition, so that the number of repeated uncertain
parameters can be minimized. A factor which can be shown to increase the size of the A
matrix is the particular state-space realization used in representing the system. To illustrate
this, consider the following simple examples:

Example 3.1: Consider the system

G(s) = 1 _ 1
s2+ (0, +02)s+ 60100 (s+01)(s+02)
where
01‘——010+(51 922920+(52
-1<6 <1 —1<48 <1

and the system is represented in state-space form as

Aoy (- w)  Be HECR

This system has two uncertain real poles, 1 and 6. The terms §; and 6y represent the
uncertain parameters associated with the uncertain poles. In block diagram form, this system
can be represented directly from the transfer equation
s’y = —(01 + 62)sy — 0162y +u

= [~(810 + 020) — (61 + 62)] 55 + (—010020 — 02061 — F1062 — 6162) ¥ +u

as shown in sketch A.
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Then the uncertain parameters can be separated out into the P-A model shown in sketch B.
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The A matrix associated with this model is A = diag [61, 81, 89, 83, which is four-dimensional.
The nominal system P(s) can be represented as

P1
X1 0 1 ][le [0 0 0 0} P2 [0]
o + + u
[X2] [—910920 (010 +020) | [ x2 -1 0 -1 -1| |p; 1
P4
qai 020 1 0 0 0 0] [py
Q| _| 1 0 X1 n 0 00 O P2
a3 | |0 1| [xo 000 0| [p3
q4 0 O 01 00 P4
- X1
y=Ir4 [m]

Example 3.2: The system G(s) in example 3.1 can also be represented by the block
diagram in sketch C.

1
(s+ 0])(s+ 92)

Sketch C



where
91:010+51 92=920+52

-1<6§ <1 —1<6<1

and the state-space representation is given by

[0 5] wef] cem

An equivalent block-diagram realization for this system is given directly by the cascaded form
in sketch D.

P 4 P a4
§) jt—— 6y |e——
61y je— 6 fe——
u 1 1 y
» - —
5 s
Sketch D

An equivalent P-A model is given in sketch E.

P B q;

Sketch E

where the A matrix is given by A = diag [}, 8;], which is two-dimensional, and a state-space
realization of the nominal plant P(s) is given by

Bl-0 L B ARG



al=10 9 2]
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The P-A models obtained in examples 3.1 and 3.2 are very different, even though they
both represent the same system with two uncertain parameters. Obviously, the P-A model of
example 3.2 is minimal (A is two-dimensional) and that of example 3.1 is not minimal (A is
four-dimensional), since for minimality the dimension of A should be as close to the number
of independent uncertain parameters as possible. These examples therefore demonstrate the
effect the particular realization has in forming a P-A model. In particular, it appears that a
cascade realization is a desirable form for obtaining a minimal P-A model. Thus, a general
cascade-form realization is part of the approach taken in constructing a minimal P-A model
so that uncertain real poles and zeros can be cascaded whenever possible. A problem arises,
however, in that some transfer functions have a form which precludes cascading uncertain real
poles or zeros such as

_ b182 +bos + b3

)= (s+61)(s+09)
- (5+91)(8+02) h

G(s,6
(S ) 32+als+a2

G(s, 6

where 6 and 6 are assumed to be uncertain (and hence a function of 6). Cascading the poles
and zeros for either case would result in improper transfer function blocks being realized. For
these cases, it is unavoidable for the minimal A matrix to have repeated uncertain parameters
on the main diagonal. However, for each inseparable pole or zero pair it is only necessary to
repeat one uncertain parameter. This issue is addressed in the proposed solution, and a minimal
P-A model for the first transfer function above is given as an example.

Another factor which affects the dimension of the P-A model is the form of the coefficien. .n
the system transfer function. If any of the coefficients are nonlinear functions of the uncertain
parameters instead of multilinear functions (e.g., there are nth-order uncertain terms in any
of the coefficients), then extra dependent uncertain parameters must be defined in order to
represent these terms in a multilinear form. For example, 6% would be represented as 6169,
where 69 = 61, and both 6; and 5 would appear in the A matrix. T hus, for this case, it is
again necessary that the minimal A matrix contain repeated uncertain parameters on its main
diagonal. An example illustrating this situation is presented later.

These issues are addressed in the solution presented herein for constructing a minimal P-A
model. The approach taken in forming this solution is described in the next section.

4. Solution Structure

Based on the problem definition and the minimality considerations outlined previously,
several issues are addressed in forming a solution to the problem of constructing a minimal
P-A model given the transfer function of an uncertain system. First, a general cascade-form
realization is found which can be used to obtain a minimal P-A model. Second, the minimal
A matrix is determined for any uncertain system such that extra dependent parameters are
assigned to account for inseparable pairs of uncertain real poles or zeros as well as nonmultilinear
(e.g., squared) terms. (As stated previously, it should be noted that the representation of nth-
order terms in a multilinear form is a conservative approximation.) Third, a method of obtaining
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a state-space realization of P(s) for any uncertain system is found. Therefore, the proposed
approach for constructing a minimal P-A model is given as follows:

1. Obtain a cascade-form realization of the system so that the state-space uncertain model can
be written as

x = Ax + Bu )
y = Cx+ Du (1)

where
A= Ao+ Ap B = By + Ba @

The terms with the subscript o (Ap, Bo, Co, and Do) represent the nominal matrix
components, and the terms with the subscript A (Ap, Ba, Ca, and Dp) represent the
uncertain matrix components.

9. Determine the minimal uncertainty matrix A as described in the problem definition and
depicted in figure 2, where A is defined as follows:

A = diag[61, 69,63, . ..,6m] = diag[é1,6p] = diag [6] (3)

where
A ¢ RmX™M 8y € R™I §p € RMP §e€ R™

The vector of uncertain parameters is

6 =[61,62,63,--.,6m]

the partition of § containing independent parameters is

br = [61,6%637- . ~a6’m[]

and the partition of § containing dependent parameters is

6D = [67n1+1: 5m1+2a 6’(7’1,]—1—37 e :6mD

where
m minimal number of uncertain parameters
my number of independent parameters given in G(s, 6)
mp minimal number of dependent (or repeated) parameters
Also
p=A4q (4)
where
P uncertain parameters input to P(s), p € R™
q uncertain variables output from P(s), g € R™

Thus, since my is given and fixed, the minimal A matrix results when mp (i.e., the number
of dependent (or repeated) parameters in the A matrix) is minimal (or zero, if possible).



3. Determine the state-space model of the nominal open-loop plant P(s) having the following
form:

%= Aoz + [Bzy By [EJ

Sl ][R 2] )

where Bgp, Cyz, Dgp, Dgu, and Dy are constant matrices. Thus, P(s) can also be written
in the equivalent shorthand notation defined as follows:

(3)

_ |Pui(s) Pia(s)] _ | Ao|Bap Bo
Ps) = [P21(3) P22(3)] " | Cqc|Dygp Dy, (6)
ol Dyp Do
where .
P1a(e) = I3 = Cals! — 40) 1By + D,
Pia(s) = % = Cge (sl - Ao) 1B, + Dgu
(7)
P21 (S) = % = CO(SI - AO)—IBI}) + Dyp
Poo(s) = % = Co(sI — Ao)_lBo + Dy J

and with the notation of equation (6), the individual transfer function matrices P;;(s) can
be expressed as

[ Ao Barp Ao | By
P11(s) = +J P12(8)={ 5

L Cgz |Dgp Cyz | Dqu

[ 4, B Ao| B
Pai(s) = F:}‘DZJ Paa(s) = [C‘jfﬂ

This notation is used in this paper (and in the literature) to conveniently represent a
transfer function matrix in terms of the state-space matrices of the system realization.
The last term in equation (6) should not be viewed as a partitioned constant matrix
but as the partitioned transfer function matrices defined by equations (7) and (8). This
distinction is made in the notation through the use of solid (as opposed to dashed)
partitioning lines.

(8)

It should be noted that this model is an extension of the result of Morton and McAfoos
(ref. 26), where the Dgp matrix was required to be zero. In this paper, however, Dy, is
allowed to be nonzero in order to model the multilinear (cross-product) uncertain terms.

The results for constructing a minimal P-A model via this approach are presented in the
next section.

5. Computational Details of Solution

The proposed solution is presented in four parts. The results for obtaining a cascade-form
realization of the uncertain system are summarized first, followed by the results for obtaining

9



a minimal A matrix and a state-space realization of P(s). Then, a summary of the overall
procedure is presented.

5.1. Cascade-Form Realization

Given the transfer function of an uncertain system in terms of its uncertain parameters
G(s, 6), it is desired to realize the system in a cascade form of first- and second-order subsystems.
Thus, if the transfer function is given in unfactored form, the numerator and denominator
polynomials must be factored into first- and second-order subsystems, where the second-order
terms are only used to represent complex conjugate and inseparable pole/zero pairs. The given
transfer function can then be represented as follows:

G(s,6) = Ky(8) Gg(s,6) GR(s,6) Ku(6) 9

where Ky, and Ky represent input and output gain terms, respectively, and G g and G ¢ represent
the first-order and second-order transfer function components, respectively. Then

GR(s,0) = GRk(s,(S) GRk_l(s,é) ...GR,(s,6) GpR, (s,6) (10)
Gols,6) = Gg, (s, 8) GCg_l(S’é) ...Gc,(s,8) Gy (s, 6) (11)
Boi—15 + B
(5. 6) = ———
GRI(S’ ) s+ o (12)
bai_os% +b3;_15+ ba;
Gci(s,a) — 3’L 225 + 31 18 + 3’L (13)
84 +ag;—18 +ag;
and
k number of first-order blocks
¢ number of second-order blocks

Any or all these transfer function coefficients may be uncertain. The uncertainty may arise
from either the coefficient itself being uncertain or from the coefficient being a multilinear
function of one or more uncertain variables. Therefore, for either case, any of the coefficients
may be a function of §. Furthermore, the uncertain variables may have either an additive,
€ = €0 + b¢, or multiplicative, € = eo(1 + b¢), form.

The following cascade-form state-space realization of this system is proposed:

Bod N l Bobnk
G(s,8) = A < CRou 14
(0)= | K,DcCr KyCC‘KyDCDRKu (14)
where
I Ag, 0 0 0]
Bg,Cr, A% 0 0
Bg,Dg,Cr, Bp,Cr, 0 0
Ap= Bg,Dr,Dr,Cr, Bg,Dr,Cr, 0 0
Br, DR, , -Pr,Cr BR PR, DrCry - Ap,_, 0
L BRkDRk_l"'DR2CR1 BRkDRk—l.-'DRBCR2 e BRkCRk—l ARk(— )
15
10



Bp = BR4D33DR2D31 (16)

Cr=|(DrDr,_, - -Dr,Cr,) (Dk,Dr, ;- Dr,Chr,) --- (Pr,Cr,,) (Cr,)] (7

Dp = [DRkDRk_l...DRQDRl] (18)

The A¢, Be, C¢, and D¢ matrices have the exact same form as equations (15) through (18),
except that the subscripts R and k are replaced by C and ¢, respectively. The submatrices are
defined from equations (12) and (13) as follows:

ARz‘ = —oy BRi =1 (19)
CRr;, = B2 — a;B2;1 Dpr, =021
where the terms o and 3 are defined in equation (12), and
SRR oo [}
J —agj —azj_l J 1 (20)

Ce,; = [(ij - a2jb3j—2) (b3j—1 - a2j—1b3j—2)] Dej=b35_9

where the terms a and b are defined in equation (13). The state-space realizations
{ARz’ BRi’ CRz-» DRL-} and {Agj, BCJ,, CCJ,, DC].} lead to the ith first-order and jth
second-order transfer matrices G R; (s,8) and GCj (s, 6), respectively, where i = 1,2,..., k, and
7=12,...,¢

The resulting cascade-form realization of the uncertain system is therefore obtained from
equation (14) as

A_| Ar 0 B | BrKu
BcCr Ac BcDRrKy (21)
C=[KyDcCr KyCcl D = [KyDcDpKy]

This model is a general cascade-form realization for any uncertain open-loop SISO transfer
function. The model does not, however, handle nonmonic denominator polynomials with
uncertain leading coefficients. This would result in fractional (i.e., rational) matrix elements
in the realization with uncertain parameters in the denominator of these elements. For real
uncertain poles or zeros, two factors determine whether the first-order (real) or second-order
(complex) block form should be used. The first is the nature of the uncertainty associated with
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these terms, and the second is the form of the transfer function. If the real pole or zero locations
are the uncertain parameters and the transfer function form allows these poles or zeros to be
separated out, then the real block form should be used. If the transfer function form does not
allow this separation, then the complex block form must be used. Furthermore, if there is a
pair of uncertain poles or zeros that cannot be cascaded, then the resulting minimum A matrix
will have a repeated parameter on the main diagonal for each inseparable pole or zero pair.
Alternatively, if the coefficients of the second-order polynomial associated with the real poles
are the uncertain parameters, then the complex block form should be used. These cases are
illustrated in section 6 of this paper. The formulation of the minimal A matrix is presented
next.

5.2. Minimal A Matrix

In formulating the minimal P-A model, the minimal A matrix must be determined first.
The minimal A matrix is defined as in equation (3) with

m=my+mp (22)

where m; is the number of independent uncertain parameters and mp is the number of
dependent uncertain parameters that must be added. The independent uncertain parameters are
those defined in G(s, ). However, as discussed previously, the dependent uncertain parameters
are those independent parameters that must be repeated due to nonmultilinear terms in the
transfer function coefficients and/or pairs of uncertain real poles or zeros that cannot be
cascaded. Thus, for A to be minimal, mp (the dimension of §p) should be minimized. It
can be shown that if the system transfer function is formed from a given minimal P-A model
of an uncertain system, the coefficients of the numerator and denominator polynomials will be
multilinear functions of the uncertain parameters. Unfortunately, the converse is not generally
true because of the dependence of the P-A model on the realization used for the plant. However,
if the general cascade-form realization posed in this paper is used, the multilinear form of the
transfer function coefficients can be used to establish that m = mj (i.e., mp = 0) unless there
are real uncertain pairs of poles or zeros that cannot be cascaded. Furthermore, it can be shown
that if the coefficients of all the factors of the numerator and denominator polynomials are
multilinear functions, then the coefficients of the expanded polynomials will also be multilinear.
However, if there are nonmultilinear uncertain terms in the transfer function, then dependent
parameters must be defined (and included in A) to represent the nonmultilinear term in a
multilinear form. Moreover, if the nonmultilinear term is of the form 6", then n — 1 dependent
parameters must be defined. If there are pairs of uncertain real poles or zeros that cannot
be cascaded, then one additional dependent parameter must be added for each pair, and the
dependent parameter can be either of the uncertain real parameters in the pair. Therefore, the
number m, as determined by these rules, is the minimal dimension of the A matrix for the
uncertainty class considered in this paper. Once this minimal dimension is determined, the A
matrix can be defined as a diagonal matrix, as in equation (3), with the specified uncertain
parameters on the main diagonal. Examples which illustrate these cases are presented later in
section 6.

5.3. State-Space Realization of P(s)

Once the cascade-form realization has been determined, the system can be modeled as in
equations (1) and (2), where the elements of A, Bp, Ca, and DA are known functions of
the uncertain parameters. Since any nonmultilinear terms have been redefined in a multilinear
form when the minimal A matrix is determined, these matrices are multilinear functions of
the parameters. In order to obtain a state-space model for P(s) as defined in equations (5),

12
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expressions for these uncertainty matrices must be determined in terms of the matrices Byp,
Cgz, Dgp, Dgu, and Dyp from the model. With equations (4) and (5), these expressions can
be determined as follows:

Ca=Dyp A(I-Dgp A)"!Cyr = Dyp(I - A Dyy)~! A Cye

The inverse term makes computation of Dgp very difficult. Furthermore, the matrix inversion
can cause Ap, BA, Ca, and DA to have fractional (i.e., rational) elements with uncertain
parameters in the denominator, which is not allowed in the uncertainty class being considered.
Thus, it is desirable to represent this factor in terms of its Neumann expansion (ref. 36):

(I-ADg) ' =I+ADg+ (A Dg)2+(ADy)+... (24)
where the latter form in equations (23) has been assumed. Then equations (23) can be rewritten

as

)

A =Bzp A Cgz + Bap {A Dyy + (A Dgp)? + (A D)3 + .. } A Gy

| (25)
Ca =Dyp A Cgz + Dy, {A Dgp + (A Dgp)? + (A Dyp)3 +} A Cgz r

Dp =Dyp A Dgy+Dyp { A Dgp + (A Dgp)? + (A Dgy)? +..} A Dy

The second group of terms add in the cross terms of the multilinear uncertainty functions. Each
term in the series adds a higher order cross-product term. Since A A» BA, Ca, and Dy are
multilinear functions with a finite number of terms, the Dgp matrix can be defined to have a
special structure such that the infinite series of equation (24) can be replaced by a finite series.
Hence, convergence of the infinite series of equation (24) need not be considered. This special
structure for Dgy, is given as follows:

(A Dgp)tl=0 (26)

Thus,
(I-ADg) l=I+ADg,+(A Dgp)2 +...(A Dgp)" (27)

where r is the order of the highest cross term occurring in Aa, Ba, Ca, and Dy that is,
r =max (Oy4, Op, Oc, Op) (28)

and O 4, Op, O¢, and Op, represent the order of the highest order cross-product term in A A,
Ba, CA, and Dy, respectively. That is, for a general uncertain m x n matrix M,

Om = max [order (m;;); foralli =1,2,...,mand j =1,2,.. ., n] (29a)

13
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where the order of each m;; is the order of its highest order cross-product term, and cross-
product term order is defined as

order (81 89 63...6;) =i—1 (t=1,2,...,m) (29b)

Thus, the maximum value of r is Tmax = m — 1, where m is the dimension of the A matrix.
The required structure for Dgp to satisfy equations (26) and (27) is given as follows:

1.d; =0 (i=12,...,m)
2. Ifdij#O, then fori =1,2,...,mand j =1,2,...,m:

a. dji =0 (30)
b. di@l,j@l =0or die}?,j@? =0or di@(m—l),j@(m—l) =0
where @ represents modulo m addition (ref. 37) over the set {1,2,...,m}; that is,
_f a+b (a+b<m)
a®b= {a+b—m (a+b>m)}
The desired equations can therefore be written as
Ap =Bap A Cgz +Bup {A Dgp+ (A D)’ +...(A Dgp)"} A Cqer )
Ba = Bap A Dgu+ Bup {8 Dgp + (A Dgp)” +...(A Dgp)"} A Dgu
> (31)

Dp = Dyp A Dy + Dyp { A Dgp+ (A Dgp)” + ... (& Dgp)"} A Dau |

where  is defined by equation (28). Since the Ax, BA, Ca, Da, and A matrices are known for
the given system, equations (31) can be used to determine Byp, Cqz, Dgu, Dyp, and Dgp. Once
these matrices are obtained, the state-space model of P(s) is determined. Hence, a minimal
M-A model can also be formed.

A procedure which summarizes the necessary steps in obtaining a minimal P-A model using
these results is presented next.

5.4. Summary of Procedure

The following is a summary of the procedure implied by the preceding proposed approach
for forming a minimal P-A model of a given uncertain system:

1. Obtain the system transfer function in factored form. The coefficients of each factor should
be a multilinear function of the uncertain parameters. If necessary, define new dependent
parameters to represent any nonmultilinear terms in a multilinear form.

2. Define the number of parameters in the A matrix, m, using equation (22). In so doing,
determine if any new parameters are required to model inseparable uncertain real pole or
zero pairs. If there are inseparable real pairs, either uncertain parameter in the pair must
be repeated.

14



3. Define the minimal A matrix as in equation (3), using the independent parameters defined
in the given transfer function as well as those defined in steps 1 and 2.

4. Obtain a cascade-form realization for the system as a function of the uncertain parameters.

b

Express the system matrices as in equations (2).

6. Determine the maximum order of cross-product terms r in Ap, Ba, Ca, and Dy
as defined by equations (28) and (29). Then A, Bp, Cp, and D have the form
represented in equations (31), where Dgp has the special structure of equation (30) required
by equation (26).

7. Express Ap, BA, Cp, and Dp as

Ap=Apg+Ap; +ApD+ ...+ Ap,
Ba =Bpg+Ba; +Bag+... + By,
Ca =Cap+Ca; +Cag+...+Chp,
DA =Dpg+Dp;+Dag+...+Da,

where the subscript ¢ represents the cross terms of ith order in each uncertainty matrix.

8. The Byp, Cyx, Dyp, and Dy matrices are found with the expansion described in reference 26
for the uncertainty matrices having zero-order cross-product terms; that is, define

M =} e = M161 + M2(52 + ...+ Mm&m (33)

where the M; matrices are appropriately partitioned. For the case of repeated parameters
(due to inseparable real poles or zeros, or due to nonmultilinear functions), the M;
matrix associated with the repeated parameter must be nonzero. These matrices can
be decomposed into the product of appropriately partitioned column and row matrices as
follows:
Mp; |

[Mci | MD”J (34)

where M B; forms the ith column of Bgp, M Dy; forms the ith column of Dy, MC forms
the ith row of Cyz, and M Dy; forms the ith row of Dgy. Thus,

sz—[MBl M32 MBm] )
D?JP—[MDU MD12 MDlm]
T 35
- = [MF . Mg,] f (35)
M T
[ Doy Dgg D2m] J

9. Use the higher order cross terms of Ax, Ba, Ca, and Dy, as in equations (32), to
determine the elements of the Dgp matrix. An augmented matrix equation can be formed

15



with equations (31). Begin with the first-order terms and specify as many elements as
possible. Continue with the second-order terms, and proceed until all elements of Dgj are
specified. Check Dgp to ensure that the required special structure of equation (30) and,
hence, equation (26) is satisfied.

10. Form the minimal P-A model as given in equations (3), (5), and (6) and depicted in figure 2.
If the M-A model is desired, the feedback control system K(s) can be closed as discussed
previously.

It should be noted that the matrices Mg, M, Mp, ., and Mp,, obtained in decomposing
the M; matrices in equation (34), are not necessarily unique. A method of formalizing this
decomposition for computer implementation is not addressed in this paper. However, an
algorithm is presented in reference 35 which accomplishes this decomposition as an extension
to reference 36. Some examples are given in the next section to illustrate these results.

6. Examples

The following examples illustrate the proposed procedure presented in section 5.4 for the
various cases discussed in the preceding sections.

Example 6.1: This example illustrates the construction of a minimal P-A model
for an uncertain system whose transfer function contains an uncertain coefficient which is
a multilinear function of the uncertain parameters as well as a coefficient which is a
nonmultilinear function of an uncertain parameter:

1
G(s,6) =
(5,9) 52 + 2¢ws + w?
where
C=<o+6< w=wo+6w

This is a second-order system with uncertain complex poles. The uncertainty appears in the
damping and frequency characteristics of the complex poles. The procedure in section 5.4 is
used to determine a minimal P-A model as follows:

1. As given, G(s,8) is in factored form. However, the constant coefficient w? is not a multilinear

function of the uncertain parameters. Substituting for w in the above transfer function
therefore yields the problematic term 63,. In order to represent this equation in multilinear
form, the following dependent variable is defined:

so that
62 = 6,03

2. There are two independent parameters, é, and 6<, and one dependent parameter, d3, due
to the nonmultilinear term. Thus, from equation (22),

m=mry+mp=2+1=3

16
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3. The minimal A matrix can be defined as follows:
A= dlag[5Ca bw, 63]
although ordering of the uncertain parameters in A is arbitrary.

4. The cascade realization using equations (13) and (20) is determined to be

-2 ] = b

S

Thus, it can be seen that for this example, the uncertain parameters occur only in the A
matrix.

5. Separate the nominal and uncertain parts of the System matrices as in equation (2):

0 1 0 0
A—AOJFAA‘[_(% J+[(—2w06w+6w63) —2(w05C+g05w+5§5w)]
SN
C=CO+CA=[1 0 +[o o]

D=1Dy+Dp = M+H

6. Find the maximum cross-term order, r:

O 4 = order (6,,63) = order (6¢bw) =1
Op=0¢c=0p=0
r=max (1,0,0,0)=1=r=1

7. Expand A A as in equations (32):
0 0 0 0
Aa=Anp+Aar = [—2w06w ~2(wob, +<05w)} + { 8.s83 45@]
8. Find Byp, Cgz, Dyp, and Dygy, by using equations (33)—(35):
Apng | B
M= |40 | A0 _ M é¢ + Maéy, + M3és

I
Cao | Dag

17
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|

where

[ |
o 0 |0

|
Mp=10 -2w | O
R A
LO 0 %0

|
0 010

_ |
Mz = | 2w, 010
Lo T -
| 0 010

i |
o 0 |0

Mj3 = - |
q__E§L4_9
|0 0 |0

It is noted that My and M3y are the coefficient matrices associated with the repeated parameter
5.. As indicated in the procedure, neither of these matrices can be a null matrix. Thus, the
nonzero elements of the coefficient matrix associated with &, have been split columnwise to

form My and M3.

Note: This is equivalent to reassigning the repeated parameters in A g, Baos
CAp, and Dap, to be columnwise independent prior to determining the
M, matrices. For this example, the reassignment can be accomplished as

follows:
Aag = 0 0
A0 — —2‘»0050.) —2(w06< + C063)

in order to be consistent with the Mg and M3 matrices determined
above.

Then

-2
wo= | 2 oo | o

18
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10.

Thus

0 0 0
0 Wo 0
0 ¢ 0

Find Dgp by using equations (31) and (32). Since r = 1 for this example, equations (31) can
be written as

]
Ca1 = Dyp[A Dgp] A Cyz

These equations can be combined into an augmented matrix equation as follows:
|
| B |
Ca1 | Dag o

Substituting into this equation for AA1, Bag, Cag, Dag, Bzp, Dyp, Cgz, Dgu, and A
and solving for Dy, yields

0 0 O
1
qu: w_o 0 0
=1
0 g5 O

which is consistent with the special structure required by equation (30). To see this, consider
equation (30). As required by condition 1, dj; = 0, dog = 0, and d33 = 0. Now consider
condition 2. First, dg; # 0 requires that diy = 0 and that d3g = 0 or d13 = 0. Since djp =0
and di3 = 0, this condition is satisfied. Similarly, d39 # 0 requires that d93 = 0 and that
d13 =0 or dg; = 0. Since dgg = 0 and d13 = 0, the condition is satisfied. Hence, the special
structure of equation (30) is satisfied.

The minimal P- A model as shown in figure 2 can now be constructed by using equations (3),
(5), and (6). The realization of P(s) for the resulting model can be depicted as follows:

; P1
1) 0 1 X1 0 0 0 0
[kQ] B l:_wg _ZCOWOjI [X2J + [—2 -2 -2 g§ + 1 u

q 0 w 0 0 0 P1

0

|1
Q2=w00[§;}+w—000 P2
q3 0 G 0 2;_1 0 P3
o
_ X1
y=[1 0] LQJ
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The A matrix is given by
A = diag [5<, b, 5w]

Example 6.2: This example illustrates the construction of a minimal P-A model for an
uncertain system whose transfer function contains an inseparable uncertain real pole pair:

b132 + bgs + b3

G(s,6) =
(s.6) (s +01)(s + 69)
where
by = b1o + 1 by = by + Opp bg = b3p + 6p3
) = 810 + 691 b = B9, + 692

1. Since the numerator is second order with uncertain coefficients, the uncertain real poles
in the denominator cannot be separated into the real cascade form. The denominator must
therefore be expanded, and the second-order (complex) block must be used in the realization;
that is,
bls2 + bos + b3

82 4 (01 +62)s + 0109

G(s,6) =

9. There are five independent uncertain parameters in this system which must all appear in the

A matrix, namely,
bl» b2, b3, 91, and 92

In addition, since 6; and 6o are an inseparable pole pair, either 87 or fy must be repeated
in the A matrix. (It can be shown that if §g; or 8gg is not repeated, the Dgp matrix will
not have the required structure of equation (30) and the higher order cross terms will not
be modeled correctly.) Thus, from equation (22)

m=5+1=6

3. The A matrix can be defined as
A = diag \iégl, 52, 592, 6b17 6b27 6()3]

where
69 = bg1

A. The cascade realization can be constructed by using equations (13) and (20) and is given as

follows:
0 1 0
A= [—9192 —-(91+92)} B = [1]

C= {(b3 — 0162b1) (bg — (61 + 92)b1)} D= [bl]

For this example, the uncertain parameters occur in the A, C, and D matrices.

5. These system matrices can be expanded as in equations (2) to yield:

20
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Lt
010920 010 + 020) ¢ L 1 J
— [ b30 — 010920b10) by — (610 + 020)b10 J D, = rblo]
A = [ 0 ] Br— o]
A (020091 + 910592 +6916892) — (8971 + 6p9) A=Y
Ca= [CAII sz] Dp = 5le

where
CA11 = 853~ 020010091 = 010510892 — 010020841 — 510891892 — 010892841 — 02089161 — 9169268,
€A12 = 02 — D101 — b100g2 — (816 + 620)851 — 891651 — Sgadh
6. Find the maximum cross-term order r using equations (28) and (29):

O4 = order (6y1699) =1 Op = order (0) =0
OC = order (6916926111) =2 OD = order (61)1) =0

r=max (1,0,2,0) =2=>r =2
7. Expand A, Bp, Cp, and D as in equations (32):

Ap =Apg+AA +Aps Ba =Bpg+Ba; +Bao
CA=Cpp+Ca1 +Cas DA =Dag+Daj+Dag

where
0 0
Arq =
A0 [—(920591 + 010092) —(591+502)]

. 0 0
Aar= [—591502 0}
00

AA? = [O 0}

0
Bao=Ba1 =Baz = [0]
Cao = {83 = 2010891 ~ 010010802 — 010020051} {6p2 — b1o0p] — b1o6p2 — (010 + 02,) 61 }]

Ca1 = [ (b1o991662 + 020091651 + 010692641) — (8g16p1 + 8g26p1)]
Caz =[-8p1892651 0]

Dag = 8] Dj; = [0] Dy = [0]
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8. Solve for Bzp, Cyz, Dyp, and Dgy using equations (33)-(35):

M = Myég + Myéoy + M3bgo + M46b1 + M56b2 + M66b3

where
|
0 010 0
% -1 !
Mi=| -6y 0] 0|7 |-—- f20 010
TV —
—B9,b10 O { 0 b1o
|
0 0 }O 0
_ | _| 1
My = 0 _I_JI ol =1___ [O 1}0}
T _
0 b | O b0
|
0 0 I 0 0
| -1 |
Mg=1 -6, -1 1 0|7 |- 1o 110
TTTTTTTTTTTN -
—b10b10 —b10 | O 1o
|
0 0 % 0 0
0 |
My = 0 0 i ol =|___ {910920 (6104‘920):—11‘
DN ~1
010920 —(010+920) { 1
0 010 r 0
M; = | % | o 10
5= 10 _0 0l = | — - — |
o1 o b '
0 0 0-1 0
Mg = .. 1 0lo
6= 10 —0 | _0 I I
1o o b

It is noted that Mj and My are associated with the repeated parameter 8g7 in A. As
discussed in example 6.1, neither M nor My can be a null matrix. Thus, as in example 6.1,
M; and My were formed by splitting up the columns of the coefficient matrix associated
with 8g;. (It can be shown that if Mj and My are not both required to be nonzero, Dgp
will not have the required structure, and hence the higher order cross-product terms will not

be modeled correctly.)

Note: As mentioned in the previous example, this is equivalent to reassigning the repeated
parameters in Apg, Bag, Cag, and Dag to be columnwise independent prior to
determining the M; matrices. For this example, the reassignment can be accomplished

as follows:

22
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A — [ 0 0 }
U (B20891 + 010699)  — (69 + 892)

Cao = [{51;3 = 020010891 — 010b1,8g9 — 910020851} {642 — b1082 — b 8go — (010 + 69,) 51;1}}

in order to be consistent with the M; and My matrices determined above.

Thus, based on the above, the following results are obtained:

0 0 0 00 0
B‘””:[—l -1 -1 0 0 o} Dyp=[—b1o—blo —blo—lll]
|— 620 0 0
0 1 o
010 1 0
Coz = Dy, =
qx 010020 (816 + 6,) qu -1
0 1 8
|1 0 |

9. The higher order cross terms are used as in equations (31) and (32) for r = 2 to determine
Dgp as follows:

AA1+Ap2 =Byp [A Dy, + (A D) } A Cyy
CA1+Caz =Dy [A Dgp + (A Dgp) ] A Cyy

Da1 +Daz =Dyp [A Dy + (A Dyy) 2| A Dy,

Substituting for these known matrices and solving for Dyp yields the following result:

[0 000 0 0
0 000 0 0
1
b _|# 00000
qp =
1 11000
0 000 0 0
L0 000 0 o

which satisfies the required structure of equation (30).
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10. Thus, from equations (3), (5), and (6), the following P-A model can be formed as depicted
in figure 2 where the state-space form of P(s) is given by

.o 0 1 er000000+0u
= | =010020 —(810+ 020) 1 -1 -1 00 0]PT]1

C 690 o 1 [0] "0 000 0 0]
0 1 0 0o 00000
9 1 0 1 90000
q= lo X 4+ u + 0>, p
010920 910+92q -1 1 1 10 00
0 1 0 0o 00 0 00
1 o | Lol Lo 00 0 0 O]
y = [b3o — 010010010 B20 — (P10t 010) b1o) X + [b1o] 1
+[-b1y —blo —bl0 -1 1 1]p

and the A matrix is given by:

A = diag {5% 891: 8925 p1> Op2: 5b3}

Example 6.3: This example illustrates the construction of a minimal P-A model for an
uncertain system which has many independent uncertain parameters:

(815 + Bo) (B3s + B4) (b132 +bas + 53)
(S + al)(s + 042)(32 +a1s+ a9)

G(s,6) =

where

oy =a1o+8a1 02=02 02 01=al0t o1 a2 =020 T da2
B =B +és Ba=ho+bp 3= B30+ 633 Ba=D10+0p4
b =blo+81 b2=baptle P3=00* 0p3
1. The given transfer function is in correct form, all coefficients are multilinear, and all pole-zero
pairs can be cascaded.

9. This system has 11 independent uncertain parameters. Since there are no nonmultilinear
terms in the transfer function coefficients and no inseparable real uncertain pole or zero pairs,
no dependent parameters need to be defined. Thus, m can be defined with equation (22) as

follows:
m=m1+mD=11+0=11=>m=11

3. The minimal A matrix can be defined as

A = disg [Sa1, 82, Sa1s Saz: p1- S Bg3: g 551 G2 3]

4. The cascade-form realization of this example is determined as follows:

Bis+ ﬁg] {B&s + 54]
s+ ay s+ a9

b152 + bgs + b3 {
Grn=—F5—""T"" Gp=Gp,Gp, =
¢ 52 +a1s+ay R R~ Ry
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The realization of G is determined from equations (13) and (20) for £ =1:

_1 0 1 _[o
Ac_[—az —01} BC_M
Cc=[b3—azb1 b2—albl] Dc=[bl}

and the realization of Gp is determined from equations ( 12) and (15)-(19) for k = 2:

. —aq 1 11
AR= [ﬂz —a1f —012] Br= [,31]

Cr= [ﬂ3 (B2 — a161) ﬂ4—a2ﬂ3J Dp = [ﬂgﬂlJ

Then the cascade realization is given by equations (14) and (21) for unity gains at the input

and output:
A_| AR 0O [ Bg
- | BcCr Ac ~ | BcDp
C= [DCCR Cc} D= [DCDR}
Thus
—ay 0 0 0 1
_ | Ba—aify —ag 0 0 _| A
A= 0 0 0 1 B = 0
B3(Ba —a1B1) By—afs —ag —ag 5103

C= [61,33(52 —a181) b1(By —agfB3) (bg—aghy) (by — a151)] D= [ﬁ1ﬂ3b1J

9-9. For this example, uncertainty arises in the A, B, C, and D matrices. The A A» Ba, Ca,
and DA matrices are fairly complicated for this example and are therefore not given. The
order of the highest cross-product term is 3, so that r = 3. Following the procedure outlined
in section 5, the results are determined in a straightforward manner to be

1 0 00 O 0 0 00 0O

B.. — B1o 1 0 0 1 1 0 00 0O
P 0 0 00 o0 0 0 00 00O
ﬂloﬁ3o 630 11 1830 ﬂ30 1 1000
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Dyp=[b10ﬂ1oﬂ3o b1o930 blo blo b10830 b10830 b0 b0 1 1 1}

-1 0 0 0 =-aj 1 (82— a10B10) O B30 (Bao — @10P10) 0 0
cT |0 -1 00 0 0 —ag, 1 (Ba0—@20030) 0 0
gz o 0 0 -1 0 0 0 0 — a9, 0 1
Lo 0o 1 0 0 O 0 0 —o1, 10
Dun=L0 00010 B, 0 B1oP3 O 0]
T 0 O 00 0 0 00 0 0 0]
0 0 00 O 0 0 0 0 0 O
0 0 00 O 0 00 O0O00O
0 0 0 0 O 0 000 O0ODO
1 0 00 O 0 00 O0O0O
Dgp = 0 0 0 0 O 0 0 0000
B1o 1 00 1 1 0O0O0O0O
0 0 0 0 O 0 00 00O
B10330 B30 1 1 B30 ﬂ30 11000
0 0 00 O 0O 00 00O
L O 0 00 O 0O 0 0 0 0 0]

10. Equations (5) and (6) can now be used to obtain the state-space model of P(s) and the A
matrix determined as step 3 of this example. This yields the desired P-A model as depicted
in figure 2.

These examples illustrate the proposed procedure for forming a minimal P-A model of an
uncertain system. Although all the steps involved in obtaining these results have not been
included (particularly in example 6.3), the stated results should provide a guide in performing
the steps of the proposed procedure. It should be noted that, for ease of hand computation,
examples 6.2 and 6.3 included only the simplistic (and less realistic) case in which the coefficients
themselves are the uncertain parameters. However, it is emphasized that, as illustrated in
example 6.1, the proposed procedure does handle the more realistic case in which the uncertain
transfer function coefficients are multilinear functions of the uncertain parameters.

7. Concluding Remarks

A proposed procedure is presented for forming a P-A model of an uncertain system which
appears to be of minimal dimension, given its transfer function in terms of the uncertain
parameters. The uncertainty class considered in this paper allows the transfer function
coefficients to be multilinear functions of the uncertain parameters, and the uncertainties may
arise in any or all of the A, B, C, and D matrices of the system model. Although no proofs are
presented regarding minimality, the resulting models appear to be minimal in dimension for all
examples worked thus far. Moreover, even if some counterexample exists for which the resulting
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P-A model is not minimal, the outlined procedure does provide a means of handling the more
realistic uncertainty class which includes multilinear functions of the uncertain parameters. This
procedure involves realizing the system in a cascade form, determining the minimal A matrix
of uncertain parameters, and obtaining a state-space model for the nominal open-loop system
P(s). As stated previously, the minimal M-A model can then be easily obtained by closing
the feedback loop. Three examples were given to illustrate the proposed procedure. The first
example had uncertainty in the A matrix only and illustrated how this method handles uncertain
system transfer functions having coefficients that are multilinear functions of the uncertain
parameters as well as coeflicients that are nonmultilinear functions of the uncertain parameters,
for which a repeated uncertain parameter had to be used. This example is representative of
typical problems that can arise in the mathematical modeling of realistic dynamic systems.
The second example had uncertain parameters arising in the A, C, and D matrices only. This
example illustrated the formulation of a minimal P-A model for a system with inseparable real
uncertain poles, and also involved repeating an uncertain parameter in the A matrix. The third
example had 11 independent uncertain parameters, which arose in the A, B, C, and D matrices
of the system realization. This example was included to demonstrate this method for a large
number of uncertain parameters which occur in all the system matrices. Also, for this example
none of the uncertain parameters had to be repeated. Thus, the minimal A matrix contained
only the independent uncertain parameters given in the problem.

Further work on the proposed procedure could include systems having a nonmonic character-
istic polynomial with an uncertain leading coefficient, as well as systems having an inner feedback
loop which may or may not have uncertainties. The former case might require extending the un-
certainty class to include rational expressions containing multilinear functions of the uncertain
parameters in the numerator and denominator, and the latter case might require a modification
in the formulation of the cascade realization. Although the procedure presented in this paper is
for single-input, single-output systems, an extension to multiple-input, multiple-output systems
appears possible and should primarily involve modifying the cascade-form realization. Other
areas of future work include development of a means of proving the minimality of a given P-A
model, development of a proof that the above procedure vields a minimal P-A model, and
development of a method of reducing a nonminimal P-A model to a minimal form.

NASA Langley Research Center

Hampton, VA 23665-5225
May 10, 1991
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